Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms
نویسندگان
چکیده
Recently, predicting proteins three-dimensional (3D) structure from its sequence information has made a significant progress due to the advances in computational techniques and the growth of experimental structures. However, selecting good models from a structural model pool is an important and challenging task in protein structure prediction. In this study, we present the first application of random forest based model quality assessment (RFMQA) to rank protein models using its structural features and knowledge-based potential energy terms. The method predicts a relative score of a model by using its secondary structure, solvent accessibility and knowledge-based potential energy terms. We trained and tested the RFMQA method on CASP8 and CASP9 targets using 5-fold cross-validation. The correlation coefficient between the TM-score of the model selected by RFMQA (TMRF) and the best server model (TMbest) is 0.945. We benchmarked our method on recent CASP10 targets by using CASP8 and 9 server models as a training set. The correlation coefficient and average difference between TMRF and TMbest over 95 CASP10 targets are 0.984 and 0.0385, respectively. The test results show that our method works better in selecting top models when compared with other top performing methods. RFMQA is available for download from http://lee.kias.re.kr/RFMQA/RFMQA_eval.tar.gz.
منابع مشابه
Evaluation of Protein Structural Models Using Random Forests
Protein structure prediction has been a “grand challenge” problem in the structure biology over the last few decades. Protein quality assessment plays a very important role in protein structure prediction. In the paper, we propose a new protein quality assessment method which can predict both local and global quality of the protein 3D structural models. Our method uses both multi and single mod...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملPropensity based classification: Dehalogenase and non-dehalogenase enzymes
The present work was designed to classify and differentiate between the dehalogenase enzyme to non–dehalogenases (other hydrolases) by taking the amino acid propensity at the core, surface and both the parts. The data sets were made on an individual basis by selecting the 3D structures of protein available in the PDB (Protein Data Bank). The prediction of the core amino acid were predicted by I...
متن کاملCLaC @ QATS: Quality Assessment for Text Simplification
This paper describes our approach to the 2016 QATS quality assessment shared task. We trained three independent Random Forest classifiers in order to assess the quality of the simplified texts in terms of grammaticality, meaning preservation and simplicity. We used the language model of Google-Ngram as feature to predict the grammaticality. Meaning preservation is predicted using two complement...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کامل